A STEREOSELECTIVE SYNTHESIS OF CORIOLIC ACID AND DIMORPHECOLIC ACID A.V. Rama Raoⁿ, E. Rajarathnam Reddy, G.V.M. Sharma,
P. Yadagiri and J.S. Yadav National Chemical Laboratory, Pune 411 008 (India)

Described herein is a convenient synthesis of coriolic acid (1) and
dimorphecolic acid (2), the two natural ionophores derived respectively
from bovine heart mitochondria and also shown to be self defensive
substances in r

Coriolic acid $(1)^{1}$ and dimorphecolic acid $(2)^{2}$ earlier isolated from bovine heart mitochondria³, belong to a family of oxyoctadecadienoate congeners and commonly found in vegetable oils are shown to possess unique calcium specific ionophoric activity⁴. Recently both these products have been isolated from the resistant cultivat of rice plant, (Oryza sativa L.) and demonstrated to act as self defensive substances against rice blast disease⁵. These findings prompted us to accomplish their total synthesis by a convenient approach so that their biological properties can be well assessed.

Our strategy for the synthesis of 1 and 2 centers round (E)-2-pentene-4-yn-1-ol (3) which should facilitate for the elaboration of the aliphatic chain as desired and allow the acetylenic bond to serve as a precursor for the cis double bond.

The key synthon, (E) -pent-2-ene-4-yn-1-ol (3) was made⁶ by treating excess acetylene with epichlorohydrin and sodamide in liquid ammonia at -32° for 3 hr and usual work $up.$ Alkylation of $\frac{3}{2}$ with tetrahydropyranyl ether of 8-bromo-1octanol (4, LiNH₂, liq.NH₃, -32°, 4 hr) gave 5⁷ in 70% yield. Compound 5 not only possesses strategically situated oxygen functionalities for the eventual elaboration of the aliphatic chain but also allows the introduction of the carboxyl group during the penultimate stage of the synthetic sequences. In

addition the acetylenic bond will serve as a precursor for the cis double bond at the final step to complete the synthesis of I. The intermediate (5) was also made by two different approaches⁸. Oxidation of 5 with activated $MnO₂$ in CHCl₃ furnished the corresponding aldehyde which was treated with n-pentyl magnesium bromide in ether to obtain the alcohol (6) in 60% yield from $5.$ The secondary alcohol in 6 was protected by benzoylation (PhCOCL, pyridine, 25", 6 hr) and later subjected to depyranylation (pyridinium-p-toluene sulphonate⁹, EtOH, 55°, 2 hr) to give the alcohol ($\frac{7}{10}$ in 78% yield from $\underline{6}$. Direct oxidation of 7 as well as its THP ether with Jones reagent led to a complex mixture of products. However, stepwise oxidation of the alcohol 7 with pyridinium dichromate in CH_2Cl_2 resulted in the formation of the corresponding aldehyde which was directly subjected to alkaline silver oxide oxidation (AgNO₃, 15% KOH, H₂O) to give the acid $\underline{8}$ in 70% overall yield. Esterification of 8 with ethereal CH_2N_2 gave the ester 9 in almost quantitative yield. Partial hydrogenation of the acetylenic bond to yield the single diolefinic ester 10 was carried out using Lindlar catalyst in presence of quinoline. The PMR and 13_C NMR of 10_C were in full agreement with the reported⁵ values of the benzoate of methyl ester of 13 -hydroxy-(Z)- $\frac{9}{2}$ -(E)-ll-octadecadienoic acid. Saponification of 10 with 3 eq. of K_2CO_3 in 25% aqueous MeOH (25°. 12 hr) followed by careful acidification with'methanolic acetic acid afforded coriolic acid (I) in 65% yield after silica gel chromatographic purification.

Synthesis of dimorphecolic acid (2) was also achieved by a similar sequence of reactions (Scheme 1) starting from (E)-pent-2-ene-4-yn-l-01 (3). Thus alkylation of 3 with n-amyl bromide (LiNH₂, Liq.NH₃, -32°, 4 hr) gave 11 in 74% yield. Oxidation of 11 with MnO₂ in CHCl₃ followed by Grignard reaction of the aldehyde with $\frac{1}{4}$ in THF afforded the alcohol (12) in 65% yield from 11. Protection of the secondary alcohol in 12 by benzoylation followed by depyranylation gave the benzoate alcohol (13) fn 80% overa11 yield. Stepwise oxidation of the alcohol (13) to the acid (14) was achieved via the aldehyde (PDC, CH_2Cl_2 , 25°, 4 hr) and then (AgNO₃, 15%, KOH, H₂O, 3 hr) in 70% yield. The acid ($\underline{14}$) was quantitatively converted to its methyl ester ($\underline{15}$) by treating with ethereàl diazomethane. Partial reduction of 15 to the diene 16 was successfully carried out by hydrogenation using Lindlar catalyst in pet.ether. The PMR and 13 C NMR of 16 were in agreement with the reported⁵ data of the benzoate of methyl ester of 9-hydroxy-(E)-10(Z)-12-octadecadienoic acid. Saponification of $\underline{16}$ (3 eq. K₂CO₃, MeOH, H₂O (4:1), 25°, 12 hr) followed by careful acidification (MeOH, AcOH) afforded dimorphecolic acid (2) in 65% yield.

The above approach is being extended for the synthesis of other unsaturated hydroxy fatty acids⁵ showing self defensive activity against rice blast disease.

Scheme-1																																											
\n $H = m + 1$ \n	\n $H = 2$ \n	\n $H = 1$ \n	\n $H = 2$ \n	\n $H = 1$ \n	\n $H = 2$ \n	\n $H = 1$ \n	\n $H = 2$ \n	\n $H = 1$ \n	\n $H =$																																		

 $\label{eq:2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{$

REFERENCES **AND** NOTES

- 1 W.H. Tallent, J. Harries and I.A. Wolff, Tetrahedron Lett. 4329 (1966).
- 2 C.R. Smith, Jr., T.L. Wilson, E.H. Melvin and I.A. Wolff, J.Am.Chem.Soc. -, 1417 (1960).
- 3 Referred as beef heart mitochondria in earlier references.
- 4 G.A. Blondin, Ann.N.Y.Acad.Sci., 264, 98 (1975).
- 5 T. Kato, Y. Yamaguchi, T. Hirano, T. Yokoyama, T. Uyehara, T. Namai, S. Yamanaka and N. Harada, Chem,Lett., 409 (1984).
- 6 L.J. Haynes, Sir Ian Heilbron, E.R.H. Jones and F. Sondheimer, J.Chem.Soc., 1583 (1947).
- 7 Al1 the new compounds showed the spectral data consistent with the proposed structures and gave satisfactory elemental analyses.
- 8 Compound 5 was also made by two other approaches: The 4-decyn-1-ol(a), readily prepared in one operation from tetrahydrofuryl chloride, was converted to the terminal acetylenic alcohol (<u>b) via</u> acetylene Zipper reaction with \texttt{NaNH}_{2} in $1,3$ -diaminopropane. The THP ether of <u>b</u> was then treated with 1.3 eq of (E)-3-bromoprop-2-en-l-01, cuprõus iodide (2 mole %) and bis (triphenylphosphine)-palladium dichloride (0.5 mole %) in diethy $\overline{1}$ amine at 40° to give $\overline{2}$ in 65% overall yield. In an alternate approach b was reacted with 3-bromopropargyl alcohol (1.2 eq) in presence of catalytic amount of cuprous chloride, $\,$ hydroxylamine hydrochloride (Cadiot-Chodkiewicz reaction) to give the diacetylenic alcohol (<u>c</u>) which was converted to <u>5</u> by selective LAH reduction in ether.

9 M. Miyashita, A. Yoshikoshi and P.A. Grieco, J.Org.Chem., 42. 3772 (1977).

NCL Communication No. 3660

(Received in UK 30 October 1984)